Placing Landmarks Suitably for Shape Analysis by Optimization

Kazunori Iwata

Graduate School of Information Sciences, Hiroshima City University

ICPR2012 in Tukuba, Japan, 14 Nov. 2012.

Landmarks

I andmarks

- are a finite number of points on the contour of an object to compare the shapes of objects.
- are points of correspondence that matches between and within objects of the same class, with the correspondence shown by a label.
- can be classified into three types,

anatomical landmarks are assigned by experts in some biologically meaningful manner.

mathematical landmarks are points that indicate some mathematical or geometrical feature. pseudo-landmarks are not classified into the above two

landmark types.

Landmark-based Analysis

Statistical Shape Analysis:

- is to compare shapes by exploiting invariant statistics under similarity transformations (translation, rotation, and isotropic scaling).
- is based on the placement of landmarks.
- falls into a classification problem over a hyper-sphere spanned by the landmarks.
- The should we place the landmarks on the contour of shape ?
- Problem in Placing Landmarks:
 - anatomical landmarks require expert knowledge about an object.
 - mathematical landmarks require several assumptions about the contour curves of an object (e.g., a high curvature point depends on the assumption that the points are ordered and the curve can be represented as a twice differentiable function.).
- Not all applications satisfy these assumptions in practice !

Preprocessing by Similarity Transformations

Preprocessing:

- is to center a contour by translation, superimpose it by rotation, and normalize it by isotropic scaling.
- A set of points of the preprocessed contour is denoted by $X_k, k = 1, \ldots, K.$

Points of the preprocessed contours of "2", "3", and "8" classes: the number of preprocessed contours in each class is K = 10.

Kernel Function

Kernel Function

For any
$$a > 0$$
,

$$g_a(x, y) \triangleq \frac{1}{\kappa} \sum_{k=1}^{\kappa} \sum_{\substack{(x', y') \in X_k}} \exp\left(-ad\left((x, y), (x', y')\right)\right)$$

where X_k is the set of points in the k-th preprocessed contour for any k = 1, ..., K.

ga

01 .0.05 Preprocessed contours

Kernel function with a = 90

 $X_1, ..., X_{10}$

Landmarks: An Example

anatomical landmarks are assigned by experts in some biologically meaningful manner.

mathematical landmarks are points that indicate some mathematical or geometrical feature.

pseudo-landmarks are not classified into the above two landmark types.

is anatomical,
 is mathematical, and
 is pseudo.

Aim and Outline

Aim:

is to give an automatic placement of landmarks without these assumptions.

Our Method:

- assumes that there exists a typical shape and obtain the landmarks of the typical shape (but not the typical shape itself).
- In places landmarks according to the landmarks.

Objective Function

The landmarks of the typical shape of the same class objects fall into the solutions of an optimization problem.

Objective Function

For any configuration of *n* landmarks $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$,

$$f(x_1, y_1, ..., x_n, y_n) \triangleq \sum_{i=1}^n \iint_{A_i} d((x_i, y_i), (x, y)) g_a(x, y) dxdy$$

where for any $i = 1, \ldots, n$,

- A_i is the Voronoi region of site (x_i, y_i)
- d is the Euclidean distance between two coordinates
- g_a: ℝ² → ℝ is the kernel function for any a > 0

Optimization Problem

 To avoid that some landmarks go to the same point, impose Constraint For any L > 0,

$$\forall i, j \ [d((x_i, y_i), (x_j, y_j)) \ge L, i \neq j]$$

 In summary, the n landmarks of the typical shape of the same class objects fall into the solutions of the following constrained optimization problem.

Placing Landmarks

- Landmarks of a preprocessed contour are the closest points from the landmarks of the typical shape given by the optimization problem.
- Landmarks of different preprocessed contours, based on the same landmark, have the same label.

x is the closest point from a landmark of the typical set +, and x is a point in the preprocessed contour.

Results: Landmark Configuration

Mean of the full Procrustes distances:

		class l'		
		"2"	"3"	"8"
class /	"2"	0.11	0.75	0.79
	"3"	0.75	0.14	0.94
	"8"	0.79	0.94	0.12

- The full Procrustes distances are small within the same class (see the cases of *I* = *I*′), while those are large between the different classes (see the cases of *I* ≠ *I*′)
- Our method is useful in shape analysis to give landmarks well on the contours of the same class objects

Appendix: Kernel Function

The x- and y-axes are d and exp(-ad), respectively.

Results: Landmarks of Typical shape

Input and Setting:

- We employed K = 10 sets of preprocessed contour points for each of "2", "3" and "8"-classes
- Setting
 - Number of landmarks was n = 7
 - Parameter of the kernel function was a = 90
 - Parameter of the constraint was L = 0.03

□ Configuration of landmarks: The following landmarks were obtained by solving the optimization problem by a gradient method. The landmarks look like each class typical shape !

Criterion for Evaluating Landmark Configuration

- We used the mean of the full Procrustes distances within the same class or between different classes.
- We expect that the mean is small within the same class, while the mean is large between different classes

Mean of the Full Procrustes Distances

For any class I, I',

$$\frac{1}{K^2} \sum_{i=1}^{K} \sum_{j=1}^{K} D_F \left(Y_i^{(l)}, Y_j^{(l')} \right),$$

where

- D_F is the full Procrustes distances (the minimum distance under similarity transformations)
- Y^(l)_i is the configuration matrix made by the preprocessed contour X_i of l class

Summary

Summary:

- We presented a method of how to place landmarks on the contours of the same class objects when the landmarks are not available.
- Our method provides an automatic placement of landmarks without an expert about the object or mathematical assumptions on the contour curves.

G Future Works: How should we find

- a good parameter of the kernel function a ?
- a good number of landmarks n?

14/16

12/10

Appendix: Full Procrustes Distance

Full Procrustes Distance

